$\sim 1 \sqrt{k} t^{-1}$

(, 1 7) ,			pegas (
			K A - AA	-
(& &	, 2015)	et al., 1)	igraph (× &
, 200	06),	<u>```</u>	`	

fi k * .k k). t (k , , , , , , k 1 1 k ∧ k , k (<u>∧</u> 4). k k k 1 (. . 4()). , i, n Kn k n, ak t ~k $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ 1), 4 b. ς k ~k k k k ~k K. .

(712 21 - 713114). **k** ~ **k k** ~

24 ~ , ,, , , , , , , , **k** , .&

- (-10), 615-620. Comptes Rendus Geoscience,
- , . . (2003) **k k k** Journal of Mammalogy, (2), 3 5–402. × -
- , . (1 67) . Cancer Research, (2 1), 20 –220. , . ., . . & , . . . (200)
- fl * * ~ ~ fl . Molecular Ecology, (1), 4073–40 7. . .

- *PLOS ONE*, (12), 0 11. *, . (1 7) Molecular Evolutionary Genetics.
- , , , , , , , , , , , . . & <u>,</u> , . (200) -
- annulata (t) .t K K . . .
- . Molecular Phylogenetics and Evolution, (2), 523–536. , . . & , . . (2015) k k k k - - Scaphinotus
- petersi (Scaphinotus). Zoological Journal of the Linnean Society, (1), 107–11.
- 1
- (1770), 20131 10.
- (1,1,0), 2.1.2 (1,1,0), 2

2 7–325.

2 - -323. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 - -33. 2 -

(2011) - \mathbf{k} . Geoscienti c Model Development Discussions, (2), 1063–112.

,.&.,.(2010) ____ K___ K___